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voice data packet should fit in a data stream and a technique is
described for retrieving the sequence number for redundant
payloads. A receiver maintains a history of previously
received timestamps and sequence numbers for previous pay-
loads. A received packet is unpacked to obtain a primary
payload and its associated sequence number and timestamp,
and a redundant payload and its associated timestamp offset.
The primary payload sequence number and timestamp are
stored in the history. A time-span of the data stream covered
by the packet is found using the timestamp offset, and a
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timestamp parameter for the redundant payload is calculated
using the primary payload timestamp and the timestamp off-
set, and is compared to timestamps in the selected portion of
the history to derive the redundant payload sequence number.
The history is updated to include the timestamp parameter
and sequence number of the redundant payload.
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SEQUENCE NUMBER RETRIEVAL FOR
VOICE DATA WITH REDUNDANCY

BACKGROUND

In a typical packet-based communication system such as
Voice over Internet Protocol (VoIP), audio data such as voice
data from a sender (source) is digitized, compressed using an
appropriate encoding algorithm and packetized at a transmit-
ter atregular intervals (e.g., every 10 ms or multiple of 10 ms).
The voice packet is then sent over the IP network to the
receiver where it is decoded and played-out to the listener
(destination). These VoIP applications use mostly UDP as the
transport layer protocol. The Real-Time Transport Protocol
(RTP) provides the additional information like sequence
numbers and time stamps.

For a packet-based voice communication, good voice qual-
ity needs to be maintained throughout the call. Degradation of
call quality results in poor quality of service (QOS). Packet
loss is one of the most prominent problems impairing the
QOS. Under a heavy traffic and congestion situation, the
packet loss may exceed the acceptable limit leading to high
buffering delay and degradation of voice quality.

To mitigate packet loss, redundancy can be introduced in
the transmission. The receiver can regenerate the lost packets
from the redundant data. The amount of redundant data trans-
mitted depends on the voice quality required at the receiving
end. For good voice quality, a large amount of redundant data
is required. Owing to the large amount of redundant data, the
bandwidth requirements can become significant. Unavail-
ability of sufficient bandwidth for packet based voice com-
munication may further worsen the call quality.

Furthermore, the addition of redundant data should also
comply with known, widely supported packetisation and con-
trol protocol standards, to enable interoperability with exist-
ing devices and elements provided by different vendors.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

A sequence number is used to indicate where a payload of
avoice data packet should fit in a data stream and a technique
is described for retrieving the sequence number for redundant
payloads. A receiver maintains a history of previously
received timestamps and sequence numbers for previous pay-
loads. A received packet is unpacked to obtain a primary
payload and its associated sequence number and timestamp,
and a redundant payload and its associated timestamp offset.
The primary payload sequence number and timestamp are
stored in the history. A time-span of the data stream covered
by the packet is found using the timestamp offset, and a
portion of the history selected based on the time-span. A
timestamp parameter for the redundant payload is calculated
using the primary payload timestamp and the timestamp off-
set, and is compared to timestamps in the selected portion of
the history to derive the redundant payload sequence number.
The history is updated to include the timestamp parameter
and sequence number of the redundant payload.

According to one aspect, there is provided a method for
determining a sequence number indicating the position of a
redundant payload of a voice data packet within a data stream,
the method comprising: maintaining a history of previously
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2

received timestamps associated with previous payloads, and
previously received or derived sequence numbers associated
with those previous payloads; unpacking a primary payload,
a sequence number associated with the primary payload, a
timestamp associated with the primary payload, the redun-
dant payload, and a timestamp offset associated with the
redundant payload from the voice data packet and storing the
sequence number associated with the primary payload and
the timestamp associated with the primary payload in the
history; calculating a timestamp parameter for the redundant
payload based on the timestamp associated with the primary
payload and the timestamp offset; calculating a time span of
the data stream covered by the voice data packet using the
timestamp offset; selecting a portion of the history based on
the time span; comparing the timestamp parameter to one or
more of the timestamps in the selected portion of the history
to derive the sequence number for the redundant payload; and
updating the history to include the timestamp parameter and
derived sequence number of the redundant payload.

According to another aspect, there is provided a system for
determining a sequence number indicating the position of a
redundant payload of a voice data packet within a data stream,
comprising: a payload history buffer; and a processor config-
ured to: maintain, in the payload history buffer, a history of
previously received timestamps associated with previous
payloads, and previously received or derived sequence num-
bers associated with those previous payloads; unpack a pri-
mary payload, a sequence number associated with the pri-
mary payload, a timestamp associated with the primary
payload, the redundant payload, and a timestamp offset asso-
ciated with the redundant payload from the voice data packet
and storing the sequence number associated with the primary
payload and the timestamp associated with the primary pay-
load in the history; calculate a timestamp parameter for the
redundant payload based on the timestamp associated with
the primary payload and the timestamp offset; calculate a
time span of the data stream covered by the voice data packet
using the timestamp offset; select a portion of the history
based on the time span; compare the timestamp parameter to
one or more of the timestamps in the selected portion of the
history to derive the sequence number for the redundant pay-
load; and update the history to include the timestamp param-
eter and derived sequence number of the redundant payload.

According to another aspect, there is provided computer
readable code adapted to perform the steps of any of the
methods when the code is run on a computer. A computer
readable storage medium may have encoded thereon the com-
puter readable code.

The above features may be combined as appropriate, as
would be apparent to a skilled person, and may be combined
with any of the aspects of the examples described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples will now be described in detail with reference to
the accompanying drawings in which:

FIG. 1 is a diagram illustrating a communication system in
which the presently disclosed examples can be implemented;

FIG. 2 is a block diagram illustrating a packet transmission
module of the bandwidth efficient communication system;

FIG. 3 is a flow diagram illustrating an overview of a
method for transmitting a voice data packet with redundancy
in a network;

FIG. 4A is a flow diagram illustrating a detailed method for
transmitting a voice data packet with redundancy in a net-
work;
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FIG. 4B is a flow diagram illustrating a detailed method for
estimating redundancy level based on packet type;

FIG. 5 is a flow diagram illustrating a method for deter-
mining whether a voice data payload is a critical payload or
non-critical payload;

FIG. 6 is a block diagram illustrating a packet receiving
module;

FIG. 7 is a flow diagram illustrating a method for estimat-
ing a network statistics of a network;

FIG. 8 is a block diagram illustrating a sequence number
retriever;

FIG. 9 is a flow diagram illustrating a method for deter-
mining a sequence number of a redundant payload of a voice
data packet;

FIG. 10 illustrates an exemplary snapshot of a packet data
time span;

FIG. 11 is a flow diagram illustrating a detailed method for
determining a sequence number of a redundant payload of a
voice data packet; and

FIG. 12 illustrates an example sequence of operations for
an efficient duplicate detection scheme.

The accompanying drawings illustrate various examples.
The skilled person will appreciate that the illustrated element
boundaries (e.g., boxes, groups of boxes, or other shapes) in
the drawings represent one example of the boundaries. It may
be that in some examples, one element may be designed as
multiple elements or that multiple elements may be designed
as one element.

Common reference numerals are used throughout the fig-
ures, where appropriate, to indicate similar features.

DETAILED DESCRIPTION

Embodiments will now be described by way of example
only.

The present disclosure describes a bandwidth efficient
communication system. The bandwidth efficient communi-
cation system includes a packet transmission module and a
packet receiving module. The packet transmission module
receives voice data which is encoded to generate a voice data
payload for transmission into the network. The voice data
may be determined to relate to a critical payload or a non-
critical payload by the packet transmission module. The voice
data payload is packetized into a voice data packet as a pri-
mary payload along with one or more redundant payloads.
The redundant payloads are selected from a set of previous
voice data payloads. The packet transmission module for-
wards the voice data packet into the network. At the receiving
end the packet receiving module determines the sequence
number of the redundant payloads and discards any duplicate
redundant payloads or voice data payloads. The communica-
tion system operates using known, widely supported packeti-
sation and control protocol standards, to enable interoperabil -
ity with existing devices and elements provided by different
vendors.

FIG. 1 is a diagram illustrating a communication system
100 in which the presently disclosed examples can be imple-
mented. The bandwidth efficient communication system 100
may include a packet transmission module 102, a network
104, a packet receiving module 106 a first user 1084 and a
second user 1085.

In an example, the packet transmission module 102 is
capable of receiving audio data from the first user 108a. The
packet transmission module 102 may be connected to any
device capable of receiving the audio data from the first user
108a such as, but not limited to, a microphone, a computer, a
phone, and/or a Personal Digital Assistant (PDA). The audio
data may be converted to a voice data packet by the packet
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4

transmission module 102 or may be received at the packet
transmission module 102 already in the form of a voice data
packet or payload for a packet. The packet transmission mod-
ule 102 may further be capable of forwarding the voice data
packet through the network 104 to the packet receiving mod-
ule 106.

In an alternate example, the packet transmission module
102 may be incorporated into any digital communication
software or hardware module enabled in a computing device
such as a computer, a phone, a Personal Digital Assistant
(PDA), or similar device.

The network 104 refers to a medium for interconnecting
the packet transmission module 102 and the packet receiving
module 106. The network 104 may include a local area net-
work (LAN), wide area network (WAN), metropolitan area
network (MAN), the internet, or any combination thereof.
Further, the network 104 may utilize various communication
protocols e.g. transmission control protocol (TCP), user data-
gram protocol (UDP), Bluetooth, IEEE 802.11, and the like.
The network 104 may further utilize cellular network e.g.
EDGE, 2G, 3G, LTE and the like to establish connection
between the packet transmission module 102 and the packet
receiving module 106. The network 104 may also comprise
any combination of wired and wireless communication links
to interconnect the packet transmission module 102 and the
packet receiving module 106.

In an example, the packet receiving module 106 is capable
of receiving the voice data packet from the network 104. The
packet receiving module 106 may further regenerate the
audio data from the received voice data packet. The packet
receiving module 106 may be connected to any device
capable of outputting the audio data to the second user 1085,
such as, but not limited to, a computer, a phone, a Personal
Digital Assistant (PDA), and/or a speaker.

In an alternate example the packet receiving module 106
may be embedded in any device capable of outputting the
audio data to the second user 1085, such as, but is not limited
to, a computer, a phone, a Personal Digital Assistant (PDA),
or similar.

The devices, in which the packet transmission module 102
and the packet receiving module 106 are present, operate on
RTP/RTCP (Real Time Protocol/Real Time Control Proto-
col). It will be appreciated by a person having ordinary skill in
the art that the devices in which the packet transmission
module 102 and the packet receiving module 106 are enabled
may support different RTP/RTCP protocols. The presently
disclosed examples are capable of reducing packet data loss
between clients operating on different RTP/RTCP protocols,
which may support different RTP/RTCP features.

FIG. 2 is a block diagram illustrating the packet transmis-
sion module 102 of the bandwidth efficient communication
system 100. In an example, the packet transmission module
102 includes a network report receiver 202, a redundancy
estimator 204, a packet identifier 206, a packetizer 208, a
transmitter 210, an encoder 212 and a history buffer 214.

The network report receiver 202 receives a network statis-
tics report from the network 104. In an example, the network
report receiver 202 may receive the network statistics report
from the packet receiving module 106.

The redundancy estimator 204 is connected to the network
report receiver 202. The redundancy estimator 204 is capable
of'unpacking or decoding lost packet statistics and/or out-of-
order packet statistics from the network statistics report. The
redundancy estimator 204 can further estimate a redundancy
value using the unpacked information from the network sta-
tistics report. The redundancy estimator 204 may also option-
ally use information about the voice data to further optimize
the redundancy value on a packet-by-packet basis.
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The redundancy estimator 204 may be connected to the
packetizer 208 and provide the estimated redundancy value.
The packetizer 208 may be connected to the packet identifier
206 and the transmitter 210.

The packet identifier 206 receives the voice data and deter-
mines whether the payload containing this voice data will be
a critical payload or a non-critical payload. To make this
determination the packet identifier 206 may include a signal
classifier 216 and a waveform similarity factor calculator 218.

The signal classifier 216 may classify the voice data pay-
load as voiced or unvoiced. The waveform similarity factor
calculator 218 may calculate a waveform similarity factor for
voice data classified as voiced.

The history buffer 214 is connected to the packet identifier
206 and the packetizer 208. The history buffer 214 maintains
a set of information about previous voice data payloads. The
information may include, but is not limited to a critical/non-
critical flag, a dropped flag, and a payload size.

The encoder 212 may encode the voice data to generate a
voice data payload. The voice data may be encoded using any
suitable encoding scheme, such as, but not limited to, I[TU-T
G.711, ITU-T G.726, ITU-T G.727, ITU-T G.729, ITU-T
G.729A, Internet Low Bit-rate Codec (iLBC), Adaptive
Multi-rate audio Codec Narrow band (AMR NB), Adaptive
Multi-rate audio Codec Wide band (AMR WB), Speex, Glo-
bal System for Mobile communication Full Rate (GSM FR),
ITU-T G.722, ITU-T G.722.1 encoding. The encoded voice
data payload may be provided to the history buffer 214 and
the packetizer 208.

The packetizer 208 may receive the voice data payload
from the encoder 212. Based on the redundancy value
received from the redundancy estimator 204, the packetizer
208 may generate a voice data packet comprising the voice
data payload as the primary payload. The packetizer 208 may
access information about the set of previous voice data pay-
loads from the history buffer 214. The set of previous voice
data payloads may be included in the voice data packet as
redundant data (i.e. data that is in addition to the primary
payload).

In one example, the packetizer 208 may packetize the data
according to the RFC2198 packet handling scheme.
RFC2198 provides the RTP payload format for the transmis-
sion of the encoded audio data in a redundant fashion and
does not require any mathematical reversible codec at the
sender or receiver. A redundancy level specifies the number of
redundant payloads included in an RFC2198 packet.

The transmitter 210 is capable of forwarding the voice data
packet to the network 104 for transmission. The transmitter
210 may also be configured to determine whether to selec-
tively drop the voice packet so that it is not transmitted into the
network 104, as will be described in more detail below. In the
event that the voice data packet is dropped, the voice data
payload from the packet may be flagged as a dropped voice
data payload in the history buffer 214 and so that the dropped
voice data payload may be transmitted in an upcoming trans-
mission.

FIG. 3 is a flow diagram illustrating an overview of a
method 300 for transmitting the voice data packet with redun-
dancy in the network.

At step 302, the network report receiver 202 receives the
network statistics report from the network 104. The network
statistics report may be a RTCP report. At step 304, the
redundancy estimator 204 estimates the redundancy value
based on the network statistics report.

At step 306, the packet identifier 206 analyses the voice
data. At step 308, the packetizer 208 generates the voice data
packet by packing the voice data payload and one or more
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redundant payloads in accordance with the redundancy value
derived in step 304. The one or more redundant payloads may
be selected from the set of previous voice payloads.

At step 310, the transmitter 210 forwards the voice data
packet for transmission over the network 104.

FIG. 4A is a flow diagram illustrating a further method 400
for transmitting the voice data packet with redundancy in the
network.

At step 402, the network report receiver 202 receives the
network statistics report. The network statistic report may
contain lost packet statistics and/or out-of-order packet sta-
tistics.

At step 404, the redundancy estimator 204 unpacks or
decodes the lost packet statistics and/or the out-of-order
packet statistics.

For instance, in one example, the network statistics may be
retrieved from the network statistics report for an RTCP
packet. For example, the RTCP packet may be an “applica-
tion-defined RTCP packet” generated by the receiver side, as
described in more detail below. In the case of the application-
defined RTCP packet, the lost packet statistics and the out-
of-order packet statistics may be received as four, 32-bit data
blocks. A first 32-bit data block and a second 32-bit data block
may refer to lower and higher parts of the lost packet statistics
and a third 32-bit data block and a fourth 32-bit data block
may refer to the lower and higher parts of the out-of-order
packet statistics. In an example, each two bit pair (even and
subsequent odd bit) of the lost packet statistics represents a
particular quantized loss order. For example, the first 2-bits of
the lower part of the lost packet statistics may be extracted to
a zero-th position of a packet loss order distribution buffer.
Similarly the third bit and the fourth bit of the lower part of the
lost packet statistics may be extracted to a first position of the
packet loss order distribution buffer. In the same way all the
32 bits of the lower part of the lost packet statistics may be
unpacked into the packet loss order distribution buffer, from
the zero-th position of the packet loss order distribution buffer
to a fifteenth position of the packet loss order distribution
buffer.

The first 2-bits of the higher parts of the lost packet statis-
tics may be extracted to a sixteenth position of the packet loss
order distribution buffer. Similarly the remaining bits of the
higher order of the lost packet statistics may be unpacked into
the packet loss order distribution buffer, from the seventeenth
position of the packet loss order distribution buffer to a
twenty-ninth position of the packet loss distribution buffer. In
this example, bits 27 to 31 of the higher part are not used.

Inthis example, the unpacked distribution buffers will have
the values from O to 3 at each position (due to each position
containing 2 bits). Each 2-bit value at a given position repre-
sents a value or range for a histogram of the network packet
loss statistics, as illustrated in the table below. The histogram
may represent the distribution of consecutively lost packets,
such that the position in the buffer represents the number of
consecutively lost packets, and the value represents the fre-
quency.

2-Bit Value in Value
Distribution Buffer Representation
0 0
1 lor2
2 3to7
3 Greater than 8

In a similar manner, the lower and higher parts of the
out-of-order packet statistics may be unpacked to create an
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out-of-order distribution buffer in the case of an application-
defined RTCP packet. These can be translated to values for a
histogram of the network packet out-of-order statistics using
a similar table to that above. For example, the histogram may
represent the distribution of consecutive out-of-order pack-
ets, such that the position in the buffer represents the number
of consecutive out-of-order packets, and the value represents
the frequency.

8

location immediately prior to a predefined consecutive num-
ber of zeroes (the window size). For example, if a short
window of length 3 is applied to the table below, then index 16
is the first position in the buffer that is followed by three
consecutive zeroes. In another example, if a longer buffer of
length 6 is used, then index 20 is the location preceding six
consecutive zeroes. The index value derived from the 2D filter
can be used to derive the MRD, e.g. using a look-up table as
in the example above.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 2 2 2 2 2 2 2 1 1 0 1 1 1

15

16
1 6 0 o0 1 0 0O O O 0O O O O O 1 O

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note that, in other examples, different types of network
statistics can also be used, such as percentage packet loss or
percentage out-of-order statistics, rather than the fine-grained
statistics described above.

At step 406, the redundancy estimator 204 estimates the
redundancy value based on the network statistics. The redun-
dancy value may be calculated in different ways using the
network statistics, depending on a mode of operation of the
bandwidth efficient communication system 100. Alterna-
tively, the bandwidth efficient communication system 100
may configure the mode of operation depending on the RTCP
features supported (and hence the network statistics reported)
by the client participating in the communication.

In a first example, the redundancy value may be estimated
using an aggregate packet loss statistic and a look-up table for
the redundancy value. For example, the look-up table may
comprise a first predefined list and a second predefined list.
The first predefined list may contain a set of values related to
the network packet loss statistics, such as the percentage
packet loss. The network packet loss may be derived from the
lost packet statistics described above or may be directly
obtained from an RTCP network statistics report. The second
predefined list may contain a set of values related to a maxi-
mum redundancy depth (MRD). A table index may be deter-
mined from the first predefined list based on the network
packet loss, for example as the lowest index of the table
having an associated value greater than or equal to the net-
work packet loss. The maximum redundancy depth (MRD)
may be derived from the second predefined list as the value at
that index.

For instance, assume the first predefined list to have values
0f {0,1,5,9,13,17,100} and the second predefined list to have
values of {0,2,4,6,8,10,12}. So, for network packet loss to be
13, the table index is equal to 4. Hence the corresponding
value of the estimated MRD from the second predefined list is
8.

Note that, in other examples, different types of compari-
sons or lookups can be used to achieve the same effect.

In a second example, the redundancy value may be esti-
mated by filtering the packet loss order distribution buffer
described above. For example, the packet loss order distribu-
tion buffer can be searched to find a location within the packet
loss order distribution buffer that has one or more values that
match one or more predetermined values. For example, a 2D
windowed filter can be used as described below, although
other filtering techniques can be used in alternative examples.
Filtering may be used to remove outliers from the packet loss
statistics.

For instance, the table below illustrates an example packet
loss distribution buffer, with the buffer indices shown above
the buffer values for convenience. The 2D windowed filter
aims to find the smallest index value corresponding to a
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In a further example, a first zero index corresponding to the
location of a first zero value in the packet loss distribution
buffer may be used to estimate the MRD. This is similar to a
window size of 1 in the above example, and would correspond
to index 11 in the table above. In another exemplary imple-
mentation, the MRD can be derived using the value at a
location having a predefined relationship to the first zero
index, such as the value at the location of (zero index-2),
which corresponds to index 9 in the table above.

The above examples derive a value for the MRD. The MRD
values can be used to estimate the redundancy value using any
one of a number of different techniques. In a first example,
any increase in the MRD from a previously estimated redun-
dancy value results in the redundancy value being set to be
equal to the MRD. In the case that the MRD is less than the
previously estimated redundancy values for a predefined
number of estimations, then the redundancy value is esti-
mated by decrementing the previous redundancy value.
Example pseudo code for such a technique is illustrated
below, where MRD(k) represents the k” estimate of the
MRD, and RV(k) is the redundancy value at k. In this
example, the system waits until the MRD is less than the
redundancy value for five consecutive estimates before dec-
rementing the redundancy value.

if MRD(K) > RV(k-1)))
{

RV (k) = MRD(k)
wait_cnt(k) =0

else

wait_cnt(k) = wait_cnt(k-1)+1
if(wait_cnt(k) >=5)

RV(k)= RV(k-1)-1)
wait_cnt(k) =0

else
RV(k) = RV(k-1)

In a second example, the redundancy value may be esti-
mated as the maximum of a number of past MRD values. For
instance, the redundancy value may be estimated as the maxi-
mum of the past 12 MRD values.

It may be understood by a person having ordinary skill in
the art that any of the methods explained above may be
utilized for the estimation of the redundancy value, or com-
bined as appropriate.

In the above described examples, the redundancy value is
determined for each network statistics report received (i.e. at
each estimate of the MRD). Several packets may be transmit-
ted between each network statistics report, and therefore, in
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some examples, the redundancy value may be further refined
on a packet level. This may be done because sending redun-
dant payloads for all the packets may not represent efficient
bandwidth use. The redundancy value can be refined at the
packet level based on the type of the current packet and one or
more past packets, for example if it is a DTMF, DTX, SID or
SPEECH packet. This refined redundancy value (denoted
Nr(n)) is used as the number of the redundant payloads to be
packed with the primary payload for every packet transmis-
sion at the n” packet/sequence number.

For example, the refined redundancy value can be calcu-
lated as shown in FIG. 4B. FIG. 4B is a flow diagram illus-
trating a method for estimating redundancy level based on
packet type.

At step 420, the redundancy estimator 204 receives infor-
mation about the current voice data payload to further opti-
mize the redundancy value at packet level based on the type of
packet that the current voice data payload corresponds to.

At step 422, the redundancy estimator 204 determines
whether the type of the voice data packet is DTX, DTMF or
SID. The method proceeds to step 424 in the case that the
frame type is DTX, DTMF or SID.

At step 424, the redundancy estimator 204 checks whether
the voice data packet is of a specific type, and also whether the
previous redundancy value is equal to the minimum redun-
dancy required for that type. In an example, the redundancy
estimator 204 may check whether the voice data packet is of
DTMF type, and whether the redundancy value is equal to the
minimum value for DTMF (e.g. 3).

The method will proceed to step 426 in the case that both
the conditions of type and previous redundancy value being
equal to the minimum required are met. At step 426 the
refined redundancy value is maintained at the minimum
redundancy required.

In the event that the check fails in step 424, then the method
proceeds to step 428. At step 428, the redundancy value is set
by decrementing the previous redundancy value by 1.

Returning to step 422, when the determination of frame
type being DTX, DTMF or SID fails at step 422, the method
proceeds to step 430. At step 430, a check is made whether the
type of the current voice packet is SPEECH. The type of the
previous voice packet is also checked at step 430. The method
proceeds to step 432 if the check is found true at step 430.

At step 432, the redundancy value is set to zero. In other
words, the redundancy is re-started when the packet type
changes to speech. In an example, when the type of current
voice packet is SPEECH and the type of previous voice
packet is DTX or DTMF, the redundancy value is reset to
Zero.

Returning to step 430, if the type of current voice data
packet is similar to the type of previous voice packet (fore.g.
both the voice data packets are SPEECH), the method step
moves to step 434. At step 434, the redundancy value of the
current voice data packet is set by incrementing the previous
redundancy value by one, unless the previous redundancy
value equals the MRD, in which case the redundancy value is
set to the MRD.

Referring again to FIG. 4A, at step 408, the packet identi-
fier 206 analyses the voice data.

At step 410, the packet identifier 206, optionally deter-
mines whether the payload containing the received voice data
will be a critical payload or a non-critical payload. In one
example, a critical payload is a voice data payload that cannot
be concealed by the receiver if it gets lost in the network, and
a non-critical payload is a voice data payload that can be
concealed by the receiver if it gets lost in the network. To save
the bandwidth utilization, non-critical payloads are not
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packed as redundant payloads as they can be concealed even
if they are lost in the network. To classify a payload as critical
or non-critical, the signal and speech temporal characteristics
of'the voice data are estimated and are compared with the past
payloads’ signal characteristics. A technique for determining
the critical and non-critical payloads will now be explained in
greater detail in conjunction with FIG. 5.

FIG. 5 is a flow diagram illustrating a method 500 for
determining whether the voice data will result in a critical
payload or non-critical payload.

At step 502, the packet identifier 206 receives the voice
data. The voice data may be segmented into fixed size data.
The fixed size may be 10 ms in one example.

At step 504, a signal classifier 216 classifies each segment
of the voice data as voiced or unvoiced.

If, at step 504, one or more segments of the voice data is
classified as unvoiced then the voice data payload as a whole
maybe classified as a critical payload in step 506.

Conversely, if, at step 504, all of the segments of the voice
data are classified as voiced then, at step 508, the waveform
similarity factor calculator 218 calculates the waveform simi-
larity factor. In one example, the calculation of the waveform
similarity factor may be performed based on the pitch of the
voiced data. Alternatively, if the voiced data is determined to
be noise, then the waveform similarity factor can be set to
zero. Wi(n) can be used to denote the waveform similarity
factor of the current (n”) payload.

At step 510, the packet identifier 206 estimates a variance
of'the calculated waveform similarity factor. For instance, the
variance may be estimated for the voice data for the current
payload and a predefined number of previous payloads. For
example, in the case that two previous payloads are consid-
ered, the estimated variance may be obtained from the fol-
lowing equation:

V=02 (Wf(n), Wfin=1), Wfin-2))

Where:

VAi(n): Variance;

WiH(n): Waveform Similarity factor of the current voice

payload;

Wi(n-1): Waveform Similarity factor of a voice payload

preceding the voice data payload by one; and

Wi(n-2): Waveform Similarity factor of a voice payload

preceding the voice payload by two.

At step 512, if the variance is greater than a threshold value
then at step 506 the packet identifier 206 determines that the
voice data relates to a critical payload.

However, if, at step 512, the variance is less than or equal to
the threshold value then at step 514, the packet identifier 206
determines that the voice data relates to a non-critical pay-
load.

Referring again to FIG. 4A, in the event that, at step 410,
the voice data is determined to relate to a critical payload, then
at step 412, an indication is made that the payload corre-
sponding to this voice data may be added to the set of previous
voice data payloads in the history buffer 214 (once this voice
data payload has been generated by the encoder). This means
that, for a subsequent packet, this voice data payload will be
available to be packed as redundant data. Conversely, non-
critical payloads are not added to the set of previous voice
data payloads, and hence will not be packed as redundant
data. In alternative examples, all payloads are added to the set
of previous voice data payloads, but each payload is flagged
as whether it was classified as critical or non-critical. This
enables just the critical payloads to be selected for subsequent
packets, if desired. In other examples that do not include the
classification of critical/non-critical payloads, then all voice
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data payloads are added to the set of previous voice data
payloads and are available to be included as redundant pay-
loads in future packets.

At step 414, the packetizer 208 generates the voice data
packet by packing the voice data payload generated by the
encoder. In an example, the packetizer 208 may generate the
voice data packet based on RFC 2198. The voice data packet
further includes one or more redundant payloads selected
from the set of previous voice data payloads. The number of
redundant payloads included is equal to the redundancy value
estimated at step 406. In one example, the most recent pay-
loads in the set of previous voice data payloads are selected.
Insome examples the packetizer 208 may select just payloads
flagged as critical as redundant payloads.

At step 416, the packetizer 208 may further add one or
more dropped voice data payloads flagged as such in the
history buffer 214 (regardless of whether they are critical or
non-critical payloads) into the voice data packet as redundant
data.

At step 418, the transmitter 210 determines whether to
transmit the voice data packet into the network. In some
examples, all voice data packets are transmitted into the net-
work. In other examples, virtual packet loss is induced before
transmitting to the network by dropping one or more packets
for every packet transmitted. This can be done to avoid net-
work congestion and reduce header overhead on bandwidth
usage. When a packet is dropped, the primary payload is
flagged as “dropped” in the history buffer 214. Flagging the
payload as dropped ensures that it will be transmitted at least
once as primary or redundant data, regardless of whether it is
critical or non-critical. Furthermore, the sequence number
and the timestamp of the packet are updated to account for the
un-transmitted packets which are dropped during virtual
packet loss.

Reference is now made to FIG. 6, which illustrates a block
diagram of the packet receiving module 106.

The packet receiving module 106 may include a network
statistics estimator 602, a sequence number retriever 604, a
duplicate payload discarder 606, a decoder 608, and an adap-
tive jitter buffer 614.

The network statistics estimator 602 receives the voice data
packet sent over the network from the packet transmission
module 102 and generates the network statistics report as
utilized by the packet transmission module 102 and described
above. The network statistics estimator 602 may be connected
to the sequence number retriever 604 or may operate in par-
allel with it. The received voice data packets are unpacked to
retrieve the voice data payload and the one or more redundant
payloads. The sequence number retriever 604 retrieves a
sequence number for each of the redundant payloads
unpacked from the received voice data packet. Based on the
sequence number retrieved, the duplicate payload discarder
606 discards the redundant payloads which are duplicated.
The decoder 608 rearranges the received payloads, decodes
the payloads and plays out the audio data to the second user
108b.

The network statistics estimator 602 receives the voice data
packet from the packet transmission module 102. In one
example, in order to estimate the network statistics, the net-
work statistics estimator 602 includes an estimator buffer
610. By default the estimator buffer 610 is filled initially with
fixed values. The fixed values may be O for the estimator
butfer 610.

Upon receiving a voice data packet, the network statistics
estimator 602 calculates an index value equal to the difference
between a sequence number of the voice data packet and the
sequence number of a predefined previously received voice
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data packet. For example, if the predefined previously
received voice data packet is the first packet received, and this
corresponds to the first index value, then the index value for
the current packet is the offset between the current packet’s
sequence number and the first packet’s sequence number. The
index value maps to a location in the estimator buffer 610.

If the sequence number of the voice data packet is the
maximum value so far received, then the voice data packet
received is an in-order data packet and the estimator buffer
610 is filled with a first predefined value at the index location.
If the sequence number is not the largest so far received, then
the voice data packet received is an out-of-order data packet
and the estimator buffer 610 is filled with a second predefined
value at the index location.

For example, if the voice data packet is an in-order packet
then the first predefined value may be 1. And, if the voice data
packet is an out-of-order packet then the second predefined
value may be 2. The default value may be 0 in the estimator
buffer 610 indicating that the voice packet corresponding to
that location has not been received.

The network statistics estimator 602 may estimate the net-
work statistics based on the data stored in the estimator buffer
610 when the index value is equal to or greater than a pre-
defined threshold value. The method of estimating the net-
work statistics of the network is explained in conjunction with
the flow diagram of FIG. 7.

At step 702, the network statistics estimator 602 analyses
the data in the estimator buffer 610. At step 704, a first data set
will be generated based on the occurrence of the second
predefined value (e.g. 2 in the above example) and a second
data set will be generated based on occurrence of the default
value (e.g. 0 in the above example).

The first data set relates to the number of voice data packets
received out-of-order. Similarly, the second data set relates to
the number of voice data packets lost in the network (i.e. the
voice data packet not received).

In one example, the first and second data sets generated by
the network statistics estimator 602 can be in the form of
buffers representing histograms. The first data set may be a
buffer representing a histogram of the number of times over
the measurement period (e.g. 64 packets) that consecutive
packets were received out-of-order. For example, the buffer
may represent the histogram such that the position in the
buffer represents the number of consecutive out-of-order
packets, and the value represents the frequency associated
with that number. Similarly, the second data set may be a
buffer representing a histogram of the number of times over
the measurement period (e.g. 64 packets) that consecutive
packets were lost.

For example, the buffer may represent the histogram such
that the position in the buffer represents the number of con-
secutive lost packets, and the value represents the frequency
associated with that number.

At step 706, the network statistics estimator 602 estimates
the network statistics based on the first data set and the second
data set. The out-of-order packet statistics may be calculated
using the first data set. The lost packet statistics may be
estimated using the second data set.

In some examples, the network statistics estimator 602
may also be arranged to calculate aggregate network statistics
instead of (or in addition to) fine-grained statistics such as
histograms. These may be based on counters. For example,
one counter may incremented for each occurrence of the
second predefined value (e.g. 2 in the above example) and
another counter may be incremented for each occurrence of
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the default value (e.g. O in the above example). One or more
of these counters can then be used to generate aggregate
network statistics.

For instance, in an illustrative example, the network statis-
tics estimator 602 may estimate the network statistics when
the index value reaches 64 i.e. the predefined threshold value
is 64. A first counter may be incremented for every occurrence
of 0 in the estimator buffer 610. The network statistics esti-
mator 602 may use the first counter to estimate aggregate lost
packet statistics using the following equations:

Packet loss rate=(first counter*256/64)

Percentage packet loss=(first counter*100/64)

It will be understood that the lost packet statistics may
include any data which provide information about packet loss
in the network and is not limited to the example parameters
calculated above. The estimation of the loss packet data sta-
tistics may be performed by any other suitable known tech-
niques or equations.

The network statistics estimator 602 may pack the esti-
mated lost packet statistics and out-of-order packet statistics
into the network statistics report.

For instance, the estimated lost packet statistics and the
estimated out-of-order statistics may be packed into multi-bit
variables. In one example, the statistics may be packed into an
application-defined RTCP packet as detailed in RFC 3550.
This provides four 32-bit application-dependent data fields.
In an example, the buffers representing the histograms can be
limited to a predefined size (e.g. 30 entries), and the values at
each entry (the histogram frequency) grouped into ranges,
each range represented by a 2-bit value. An example of this
was illustrated in the table above. This enables the histogram
data to be packed into a network statistics report comprising
four 32-bit data fields which is compliant with RFC 3550.

The network statistics estimator 602 may further transmit
the network statistics report to the packet transmission mod-
ule 102 periodically at a predefined interval. The network
statistics estimator 602 may further be capable of triggering
an emergency statistics report transmission in case there is a
significant change in the estimated network statistics com-
pared to a previously estimated network statistics. For
instance the significant change may refer to a 3% change in
the current network statistics from the previously estimated
network statistics.

The received voice data payload from the network statistics
estimator 602 is transmitted to the sequence number retriever
604. The sequence number retriever 604 is explained in con-
junction with FIG. 8. As described above, a data stream can
comprise a plurality of voice data packets, and each payload
within each packet needs a sequence number to indicate its
position within the data stream. Each voice data packet
received from the transmitter 210 comprises a primary pay-
load and one or more redundant payloads. The sequence
number retriever 604 is used because, in standard encoding
schemes, such as RFC 2198 for example, only the sequence
number of the primary payload is included in the packet
header. Sequence numbers for redundant data are not
included in the header. Therefore, if the redundant data is to
be used, then the sequence number for the redundant data
must be regenerated in order to be able to put the data pay-
loads (redundant or otherwise) in the correct order for decod-
ing and playback.

FIG. 8 is a block diagram illustrating the sequence number
retriever 604 in accordance with a software-implemented
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example. In other examples, the sequence number retriever
604 can be implemented in hardware, or as a combination of
hardware and software.

In this example, the sequence number retriever 604 may
include a processor 802 and a memory 804. The memory 804
further includes a program module 806 and a data module
808. The processor 802 is capable of executing a set of
instructions which are stored in the program module 806 and
accessing a set of data from the data module 808 required for
the execution of the set of instructions.

The processor 802 may refer to a general purpose CPU or
a more specialized processing unit such as a DSP or GPU, or
any other processors with similar capabilities. The processor
802 is configured to process the set of instructions stored in
the memory 804.

The memory 804 is connected to the processor 802. The
memory 804 may be an internal memory like Static Random
Access Memory (SRAM), DRAM Dynamic Random Access
Memory (DRAM), Read Only Memory (ROM), Flash
memory or other similar storage devices. Alternatively the
memory 804 may be an external memory connected to the
packet receiving module 106. The examples of such memory
804, may be Universal Serial Bus (USB) drives, hard disks,
floppy disks, Compact Disk (CD) or any known similar exter-
nal storage device. The memory 804 may also be any suitable
combination of the above.

In this example, the program module 806 includes a times-
tamp module 810, a comparison module 812, a packet data
time-span estimating module 814, a sequence number mod-
ule 816, a timestamp gap estimating module 818 and a
sequence gap estimating module 820.

The timestamp module 810 is configured to calculate a
timestamp parameter for the redundant payload. The times-
tamp module 810 may be further configured to estimate fur-
ther timestamp values relating to the timestamp parameter.

The comparison module 812 receives one or more times-
tamp inputs from the timestamp module 810. The comparison
module 812 is configured to compare the timestamp param-
eter to one or more timestamps in a selected portion of a
payload history buffer, as described below.

The packet data time-span estimating module 814 is con-
figured to calculate a time span covered by all the payloads
contained in the current voice data packet, and use this to
select a relevant portion of the payload history buffer.

The sequence number module 816 is configured to deter-
mine a sequence number for each of the one or more redun-
dant payloads using the results of the comparison module
812. The sequence number module 816 interoperates with the
comparison module 812, the timestamp gap estimating mod-
ule 818, and the sequence gap estimating module 820.

The timestamp gap estimating module 818 is configured to
estimate a timestamp gap. A timestamp gap may be used by
the sequence number module 816 to determine the sequence
number of the one or more redundant payloads, as described
below.

The sequence gap estimating module 820 is configured to
estimate a sequence number gap. The sequence number gap
may be used by the sequence number module 816 to deter-
mine the sequence number of the one or more redundant
payloads, as described below.

The data module 808 includes the payload history buffer
821. The payload history buffer 821 comprises a plurality of
entries, with one entry for each sequence number in the data
stream, and each entry arranged to store at least a timestamp
and sequence number value. Any previously received pay-
loads have their timestamps and sequence numbers (either
received directly or derived) recorded in the corresponding
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entry in the payload history buffer 821. The payload history
buffer 821 is therefore a history of data relating to previously
received payloads (which may have been received as a pri-
mary or redundant payload).

In one example, the payload history buffer 821 comprises
a timestamp buffer 822 arranged to store timestamps of pre-
viously received payloads, a sequence number buffer 824
arranged to store received or derived sequence numbers of
previously received payloads, and a payload duration buffer
826 arranged to store data relating to a duration (e.g. time in
ms) covered by the previously received payload. The data
module 808 may also include a current packet buffer 828,
which may be used to store data relating to the current voice
data packet being processed. For example, the current packet
buffer 828 may contain data unpacked from the header of the
current voice data packet. The header data may include, but is
not limited to, a sequence number of the primary voice data
payload, a timestamp of the primary voice data payload, a
payload size of the primary voice data payload and one or
more payload sizes and time stamp offsets for each of the one
or more redundant payloads.

The sequence number retriever 604 determines the
sequence number of each of the one or more redundant pay-
loads of the received voice data packet. The method for deter-
mining the sequence number of the redundant payload of the
voice data packet will now be explained in detail in conjunc-
tion with FIG. 9.

FIG. 9 is a flow diagram illustrating a method 900 for
determining the sequence number of a redundant payload of
the voice data packet.

Atstep 902, the sequence number retriever 604 receives the
voice data packet, and in step 904 unpacks the data from the
voice data packet and stores the data in current packet buffer
828. This includes data relating to the primary voice data
payload and the one or more redundant payloads.

The data relating to the primary payload includes a
sequence number associated with the primary payload, a
timestamp associated with the primary payload, as well as the
primary payload data itself. The data relating to the one or
more redundant payloads includes a timestamp offset for
each redundant payload, indicating a difference between the
timestamp associated with the primary payload and that
redundant payload. The unpacked data can be stored in the
current packet buffer 828. The timestamp and sequence num-
ber data for the primary payload can also be stored in the
payload history buffer 821.

Note that in the following example, the timestamps are
measured in units of number of samples, and relate to the
number of samples of the voice data that have been taken up
to that point. The timestamp associated with a payload there-
fore records the sample number at the start of the payload. In
other examples, alternative techniques for recording the time
of creation of a payload can be used (such as a time of day or
other counter). Other examples can also record the time at the
end of the payload, rather than the start.

Atstep 906, for each of the one or more redundant payloads
the timestamp module 810 calculates a timestamp parameter.
The timestamp parameter may be calculated by subtracting
the timestamp offset of the redundant payload from the times-
tamp of the primary payload. The timestamp offset of the
redundant payload and the timestamp of the voice data pay-
load may be retrieved from the current packet buffer 828. The
timestamp parameter for each redundant payload therefore
refers to the timestamp (in samples) associated with that
redundant payload.

In some examples, additional information about the pay-
loads in the voice data packet may also be calculated at this
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stage (not shown in FIG. 9). For example, a payload duration
may be calculated for the primary payload and each redun-
dant payload. The payload duration refers to a time period
(e.g. measured in ms) of voice data that the payload covers.
Given that the voice data is sampled at a known sampling rate,
the payload duration is therefore a measure of size of the
payload. The payload duration can be determined from infor-
mation in the header of the voice data packet. For example,
the payload duration can be determined from the amount of
data in the payload (e.g. in bytes) and a payload type (e.g.
indicating the type of encoding used). Once the payload dura-
tion has been determined it can be stored in the current packet
buffer 828, and in the payload history buffer 821 (once the
appropriate location in the payload history buffer 821 for the
relevant payload is determined). In one example, the payload
duration can be stored as an integer multiple of the smallest
possible payload duration. For example, if the smallest pay-
load duration that can be transmitted is 10 ms, then the pay-
load duration can be stored as integer multiples of 10 ms (e.g.
storing a value of 3 for a 30 ms payload duration). In alterna-
tive examples, the payload duration can be converted to
another measure of size, such as the number of voice data
samples in the payload by multiplying the payload duration
by a known sampling rate, and this value can be stored. In
further alternative examples, values such as the payload dura-
tion can be calculated as needed during other operations,
rather than being calculated in advance as described above.

At step 908, the overall time-span covered by the voice data
packet is determined by the packet data time-span estimating
module 814. In other words, the range (in time) of the voice
data contained in the packet from both the primary and redun-
dant data is calculated. This is determined by finding the
largest timestamp offset, which indicates which of the redun-
dant payloads is the earliest that is present in the voice data
packet. The maximum timestamp offset gives the difference
in samples between the primary payload and the oldest redun-
dant payload. If the maximum offset (in samples) is divided
by a known value for the sampling rate (e.g. in samples per
ms), then this gives a value (in ms in this example) for the time
duration or time-span covered between the primary payload
and the oldest redundant payload.

In step 910 a portion of the payload history buffer 821 is
selected based on the time-span. To do this, a history index
value is calculated that corresponds to the worst-case (i.e.
oldest) entry in the history that can be covered by the voice
data packet. The time-span of the packet is multiplied by a
predefined value that corresponds to the smallest possible
packet duration (e.g. in ms in this example). For example, it
may be known that the smallest packet that can be transmitted
contains 10 ms voice data. Therefore, in this example, it can
be determined that the maximum number of packets covered
by the time-span is given by the time-span divided by 10. As
the payload history buffer 821 comprises an entry for each
payload, the index of the earliest possible entry relating to the
voice data packet can be calculated by subtracting the maxi-
mum number of packets covered by the time span from the
index of the primary payload.

The selection of the portion of the payload history buffer
821 can then be based on the index of the earliest possible
entry relating to the voice data packet and the index of the
primary payload. In one example, the selection comprises
each entry in the payload history bufter 821 from and includ-
ing the index of the earliest possible entry relating to the voice
data packet up to the index of the primary payload. In another
example, the selection also includes the primary payload
entry. In a further example, the selection also includes the
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prior entry immediately preceding the index of the earliest
possible entry relating to the voice data packet.

FIG. 10 shows an example of the payload history buffer
821 and illustrates the selection of the portion of the payload
history buffer 821. This payload history buffer 821 comprises
the timestamp buffer 822, the sequence number bufter 824
and the payload duration buffer 826, as mentioned above.
Each of these buffers has an entry available for each payload.
The primary payload is shown at an index i 1002, and values
for the timestamp T,, sequence number S, and payload dura-
tion D,, have been stored in the payload history bufter 821 for
the primary payload. No entries have been added for the
redundant payloads yet, as the positions of these in the pay-
load history buffer 821 are not yet known (as the sequence
numbers have not been calculated yet). Values associated
with previously received payloads may also be present in the
payload history buffer 821, but are not shown here for clarity.

Using the maximum offset, the worst case number of pay-
loads covered by the voice data packet is determined as above.
In the example of FIG. 10, this is x packets. The index of the
payload history buffer 821 corresponding to the earliest pay-
load that may be covered by the packet is therefore index i—x.
The index of the history immediately preceding i-x is there-
fore index i-x-1 1006. The selected portion of the payload
history buffer 821 in this example is the portion from i-x-1
1006 to 11002, such that it includes the primary payload entry,
all consecutive preceding entries that could be covered by the
voice data packet, and the entry immediately preceding this.

Once the portion ofthe payload history buffer 821 has been
selected, then a number of steps are performed for each
redundant payload in the voice data packet. In examples in
which there is a plurality of redundant payloads in the voice
data packet, then the redundant payloads can be processed in
different ways. In one example, the redundant payloads may
be arranged in a specific order with respect to the primary
payload. The specific order may refer to an ascending order
according to the timestamp offset of the one or more redun-
dant payloads. Each of the redundant payloads can then be
processed in turn to attempt to derive the sequence number, as
described below. In other examples, a different order can be
used (such as a descending order), or the redundant payloads
can be processed in parallel. In further examples, the redun-
dant payloads can be processed in one order (e.g. ascending
timestamp order), and then processed again in a different
order (e.g. descending order).

In step 912 the process attempts to derive the sequence
number for the redundant payload in question. This is done by
comparing the timestamp parameter for the redundant pay-
load (or a derivative thereot) to one or more of the timestamps
(or derivatives thereof) from the selected portion of the pay-
load history buffer 821. This may comprise multiple stages or
techniques for deriving the sequence number, as outlined
below. Following this, it is determined in step 914 whether the
sequence number for the redundant payload was able to be
derived. If so, then in step 916 the payload history buffer 821
is updated to store the sequence number, timestamp data and
payload duration for redundant payload at the appropriate
location. If, however, it was determined in step 914 that the
sequence number could not be derived, then in step 918 the
redundant payload is discarded.

In some examples, step 912 can be an iterative process,
such that several different techniques are attempted in turn to
derive the sequence number. The flowchart in FIG. 11 illus-
trates an example of a sequence of different techniques that
can be applied in step 912 to derive the sequence number from
the selected portion of the payload history buffer 821 for a
redundant payload. However, note that, in different examples,
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these different techniques can be combined in a different
order, or only a selection of one or more of the techniques can
be utilized.

Referring to FIG. 11, five different techniques 1102 to
1110 are illustrated for finding the sequence number. Each of
these are tried in turn, and the process stops whenever the
sequence number is found. As noted above, in alternative
examples, these techniques could be applied in a different
order, or in parallel, or one or more of them can be omitted. In
some examples, one or more of the techniques may also be
repeated. For example, when more than one redundant pay-
load is present, then one or more of the techniques of FIG. 11
can be executed for each redundant payload in a particular
sequence (e.g. ascending timestamp order), and then repeated
for each redundant payload in a different sequence (e.g.
descending timestamp order). This enables the sequence
number data that is derived for some redundant payloads to be
used to help derive the sequence numbers for other redundant
payloads in the voice data packet.

The first technique 1102 searches, in step 1112, the
selected portion of the payload history buffer 821 to deter-
mine whether any timestamps in the selected portion are
equal to the timestamp parameter of the redundant payload.
If, in step 1114 a matching timestamp is found in the selected
portion, then this means that the redundant payload has
already been received, as otherwise an equal timestamp
would not be present in the payload history buffer 821. For
example, the redundant payload may already have been
received as a primary payload in a previous packet, or as
another redundant payload in a previous packet. In this case,
in step 1116, the redundant payload is marked as a duplicate,
and the process exits as the sequence number has been derived
for this payload (as it was already known).

However, if in step 1114 a matching timestamp was not
found, then the process moves to technique 1104. In step
1118, the timestamp parameter and other data about the
redundant payload is used to calculate the timestamp of the
payload immediately succeeding the redundant payload
(called the “subsequent timestamp” herein). The selected por-
tion of the payload history buffer 821 is then searched to
determine whether it contains a timestamp equal to the sub-
sequent timestamp. In other words, this technique is deter-
mining whether the next payload after the redundant payload
has already been received. This may compare the subsequent
timestamp against any entry in the selected portion, including
the primary payload timestamp.

The subsequent timestamp may be calculated by determin-
ing the size in samples of the redundant payload. This is
determined by multiplying the payload duration (as described
above) by the sample rate. This measure of size in samples for
the redundant payload can then be added to the timestamp
parameter to obtain the subsequent timestamp.

If it is determined in step 1120 that a matching timestamp
has been found in the selected portion, then the sequence
number for the redundant payload can be calculated by dec-
rementing the sequence number for the entry having the
matching timestamp by one in step 1122. The process then
exits as the sequence number has been found.

If in step 1120 a matching timestamp was not found, then
the process moves to technique 1106. In step 1124, the times-
tamp of the earliest payload in the selected portion is read
(this is the prior entry described above). The timestamp of the
next payload immediately succeeding the earliest payload in
the selected portion is then determined. This may be done by
determining a measure of size of the earliest payload. The
measure of size may be found by reading the payload duration
for the earliest payload in the selected portion (which may be
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stored in the payload history buffer 821 in the payload dura-
tion buffer 826) and multiplying this by the sample rate. This
gives a value for the size of the earliest payload in samples,
which can be added to the earliest payload timestamp to get
the timestamp of the payload immediately succeeding the
earliest payload. The timestamp parameter for the redundant
payload is then compared to the calculated timestamp of the
payload immediately succeeding the earliest payload to
determine whether they are equal. If not, then the next earliest
payload in the selected portion can be selected, and the times-
tamp of the payload immediately succeeding this can be
calculated and compared to the timestamp parameter. This
can be repeated for each entry in the selected portion of the
payload history buffer 821, from the prior entry up to the
primary payload.

If'in step 1126 a match is found, then the sequence number
can be calculated in step 1128 by incrementing by one the
sequence number for the entry in the selected portion having
the matching timestamp. In other words, technique 1106 is
determining whether there is a payload entry recorded in the
payload history buffer 821 that is immediately before (i.e. has
an earlier sequence number than) the redundant payload, and
uses this preceding payload entry to calculate the sequence
number.

If in step 1126 a matching timestamp was not found, then
the process moves to technique 1108. In step 1130, the closest
preceding entry to the redundant payload in the selected por-
tion having sequence number and timestamp values is found.
This can be done by finding the entry in the selected portion
having the maximum timestamp that is less than the times-
tamp parameter of the redundant payload. In addition, the
closest succeeding entry to the redundant payload in the
selected portion having sequence number and timestamp val-
ues is also found. This can be done by finding the entry in the
selected portion having the minimum timestamp that is
greater than the timestamp parameter of the redundant pay-
load.

A sequence number gap is calculated as the difference
between the sequence number of the closest preceding entry
and the closest succeeding entry. It is then determined in step
1132 whether the sequence number can be derived using the
sequence number gap. Firstly, the sequence number gap is
used to determine whether there are three missing payloads
between the closest preceding entry and the closest succeed-
ing entry. For example, the table below illustrates a scenario
in which the closest preceding entry (given an index i here)
has a timestamp and a sequence number S,, and the closest
succeeding entry (given an index j here) has a timestamp T,
and a sequence number S,. The redundant payload has a
timestamp T, (where T,<T,<T)) and an unknown sequence
number S,. In this example, there are empty entries either side
of the redundant payload, and hence there are three entries
between the closest preceding entry and the closest succeed-
ing entry. This can be determined by the sequence number gap
having a value of 4. Because it is known that there are three
entries between the closest preceding entry and the closest
succeeding entry, and from techniques 1104 and 1106 it is
known that there is not an entry with a sequence number
immediately adjacent to the redundant payload, it can be
deduced that the redundant payload is occupying the middle
position. This means that the sequence number can be found
as the value mid-way between the sequence numbers of the
closest succeeding entry and closest preceding entry. This can
be calculated either by subtracting two from the sequence
number of the closest succeeding entry or adding two to the
sequence number of the closest preceding entry.
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If it is determined that there are more than three missing
payloads between the closest succeeding entry and closest
preceding entry, then a timestamp difference can be used with
the sequence gap to attempt to derive the sequence number.
The timestamp difference is given by the difference between
the timestamp of the closest succeeding entry and the times-
tamp of the closest preceding entry (i.e. T,~T, in the example
above). A measure of size for the closest preceding payload is
found, for example by multiplying its payload duration by the
sample rate. It is then determined whether the measure of size
for the closest preceding payload multiplied by the sequence
number gap is equal to the timestamp difference. In other
words, it is determined whether the payload size for the
closest preceding entry fits given the known number of miss-
ing payloads up to the closest succeeding entry and the known
timestamp difference (i.e. if the payload size of the closest
preceding entry is applied to the missing payloads, does this
fit with the known data). If so, then the sequence number can
be interpolated using this payload size.

If not, then the same calculation is performed for the clos-
est succeeding entry. A measure of size for the closest suc-
ceeding payload is found, for example by multiplying its
payload duration by the sample rate. It is then determined
whether the measure of size for the closest succeeding pay-
load multiplied by the sequence number gap is equal to the
timestamp difference. In other words, it is determined
whether the payload size for the closest succeeding entry fits
given the known number of missing payloads back to the
closest preceding entry and the known timestamp difference
(i.e. if the payload size of the closest succeeding entry is
applied to the missing payloads, does this fit with the known
data). If so, then the sequence number can be interpolated
using this payload size.

Ifnot, then the same calculation is performed for the redun-
dant payload. The measure of size for the redundant payload
is found, for example by multiplying its payload duration by
the sample rate. It is then determined whether the measure of
size for the redundant payload multiplied by the sequence
number gap is equal to the timestamp difference. In other
words, it is determined whether the payload size for the
redundant payload fits given the known number of missing
payloads in the sequence number gap and the known times-
tamp difference (i.e. if the payload size of the redundant
payload is applied to the missing payloads, does this fit with
the known data). If so, then the sequence number can be
interpolated using this payload size. Note that in other
examples, these calculations can be performed in a different
order, or in parallel.

If it is determined in step 1132 that the sequence number
can be derived, then in step 1134 the sequence number is
determined by interpolating values from the closest succeed-
ing and closest preceding entries.

As noted above, in the case where there are three missing
payloads between the closest succeeding entry and closest
preceding entry, this can be done by selecting the mid-point
sequence number between the closest succeeding entry and
closest preceding entry (e.g. by adding two to the closest
preceding sequence numbet, or subtracting two from the clos-
est succeeding sequence number).

In the case where the payload size of the closest preceding
entry is found to fit the missing data, then the sequence
number can be found by using the payload size for the closest
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preceding entry. For example, the difference in the times-
tamps between the redundant payload and the closest preced-
ing entry can be found, and divided by this payload size to
determine how many payloads are present between the clos-
est preceding entry and the redundant payload. The sequence
number of the closest preceding entry can then be increased
by this amount to give the sequence number of the redundant
payload.

In the case where the payload size of the closest succeeding
entry is found to fit the missing data, then the sequence
number can be found by using the payload size for the closest
succeeding entry. For example, the difference in the times-
tamps between the redundant payload and the closest suc-
ceeding entry can be found, and divided by this payload size
to determine how many payloads are present between the
closest succeeding entry and the redundant payload. The
sequence number of the closest succeeding entry can then be
decreased by this amount to give the sequence number of the
redundant payload.

In the case where the payload size of the redundant payload
is found to fit the missing data, then the sequence number can
be found by using the payload size for the redundant payload.
For example, the difference in the timestamps between the
redundant payload and the closest preceding entry can be
found, and divided by this payload size to determine how
many payloads are present between the closest preceding
entry and the redundant payload. The sequence number of the
closest preceding entry can then be increased by this amount
to give the sequence number of the redundant payload. Note
that in alternative examples, the sequence number can also be
found relative to the closest succeeding entry in this case.

Once the sequence number has been derived by one of
these interpolation processes, then the process of FIG. 11
exits. If, however, it was found in step 1132 that the sequence
number for the redundant payload has not been derived, then
the process moves to technique 1110. In step 1138, the closest
succeeding entry to the redundant payload in the selected
portion having sequence number and timestamp values is
found. A timestamp gap is calculated as the difference
between the timestamp of the closest succeeding entry and
the timestamp parameter for the redundant payload. It is then
determined whether the timestamp gap is an integer multiple
of the measure of size for the redundant payload. If so, then
the sequence number can be derived. Ifit is determined in step
1138 that the sequence number can be derived, then in step
1140 the sequence number is derived by using the redundant
payload size to determine how many payloads are located
between the redundant payload and the closest succeeding
entry. This can be done by dividing the timestamp gap by the
redundant payload size. The sequence number can then be
found by subtracting this value from the sequence number of
the closest succeeding entry.

Note that technique 1110 can also be performed using the
closest preceding entry instead of the closest succeeding
entry. In this case, the timestamp gap is between the closest
preceding entry and the redundant payload, and the sequence
number is found by adding the number of payloads calculated
to be between the closest preceding entry and the redundant
payload to the sequence number of the closest preceding
entry.

If'the sequence number has been derived in step 1140, then
the process exits. Otherwise, in the example of FIG. 11, it is
determined that the sequence number cannot be derived for
the redundant payload and the process exits.

Referring again to FIG. 6, the duplicate payload discarder
606 receives the primary payload and the one or more redun-
dant payloads along with the sequence number of the primary
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payload and the sequence number of the redundant payloads
from the sequence number retriever 604. The duplicate pay-
load discarder 606 may include a duplicate payload buffer
612. The duplicate payload buffer 612 has locations that
correspond to payloads in the data stream, and maintains a
predefined value at each location. For instance, the predefined
value may correspond to 0, 1 or 2 depending on a status of the
corresponding payload. When a given payload is received as
a primary payload, the predefined value at the location cor-
responding to that payload is set to 1. In the case that the
payload is received as a redundant payload, the predefined
value at the location corresponding to that payload is set to 2.
The predefined value may be 0 for payloads which are not
received.

The duplicate payload discarder 606 finds the appropriate
location in the duplicate payload buffer 612 for the primary
payload, and sets the value to 1, and then finds the location for
each of the redundant payloads. Ifthe location for a redundant
payload contains a 0, then this means that the payload has not
previously been received, and this is updated to a 2 to indicate
that it has now been received as a redundant payload. If,
however, the location contains a value other than 0 (i.e. 1 or2
in this example), then this means that the payload has previ-
ously been received, and the redundant payload can be dis-
carded.

FIG. 12 illustrates an example sequence of operations for
updating the duplicate payload buffer 612 such that dupli-
cates can be quickly and efficiently identified and discarded.
In particular, the technique shown in FIG. 12 does not require
the use of searches, and hence reduces the need for complex
calculations and reduces memory storage. The duplicate pay-
load buffer 612 is illustrated at 1202. An index 1204 is main-
tained in the duplicate payload buffer 612 that points to a
location corresponding to the primary payload of the previous
voice data packet. The value in the buffer 612 at the previous
packet index is 1 (indicating this was received as a primary
payload, as mentioned above). The entries prior to this in the
buffer 612 have values of 0, 1 or 2, depending on how they
have been set by previous packets.

At 1206, a new packet index 1208 value is calculated. In the
case that the primary payload ofthe newly received voice data
packet is not received out-of-order, then this is calculated as
the difference between the sequence number of the primary
payload of the newly received voice data packet and the
sequence number of the primary payload of the previously
received voice data packet. For example, in the illustrative
case of FIG. 12, the sequence number difference is 5. Note
that if the newly received voice data packet is an out-of-order
packet (i.e. a negative sequence number difference would be
calculated), then the new packet index 1208 is set to the same
as the previous packet index 1204.

If the newly received voice data packet was not an out-of-
order packet, then at 1210 the value in the buffer 612 at the
new packet index 1208 is set to 1 (indicating that this was
received as a primary payload). The values in the buffer 612
between, but not including, the new packetindex 1208 and the
previous packet index 1204 are initialized to zero.

The sequence numbers of the redundant payloads in the
newly received voice data packet (as output from the
sequence number retriever 604) are then analysed. The dif-
ference between the sequence number of the primary payload
of the newly received voice data packet and each of the
redundant payloads are found. In other words, a sequence
number offset from the primary payload is calculated for each
redundant payload. The sequence number offset for each
redundant payload is subtracted from the new packet index
1208 to find a location in the buffer 612 corresponding to each
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redundant payload. This is illustrated at 1212, where the
redundant payloads have offsets of 2, 4 and 6 from the pri-
mary payload. As mentioned above, if the location for a
redundant payload contains a 0, then this means that the
payload has not previously been received, and this is updated
to a 2 to indicate that it has now been received as a redundant
payload. This is illustrated in the example at 1212, where a
value of 2 is stored at 1214, 1216 and 1218, corresponding to
each of the offset locations. If, however, the location contains
a value other than O (i.e. 1 or 2 in this example), then this
means that the payload has previously been received, and the
redundant payload can be discarded. Finally, at 1220 the
value for the previous packet index 1204 is updated to be the
same as the new packet index 1208, ready for the next voice
data packet to be received.

In some examples, the duplicate payload buffer 612 can be
configured as a circular buffer, so that the new packet index
can wrap around to the start of the buffer if it extends beyond
the end of the buffer. This enables the buffer 612 to operate
regardless of how many packets are received, without needing
to keep storing more and more data, but still provides infor-
mation on a portion of voice data most recently received.

After discarding the duplicate payloads, the duplicate pay-
load discarder 606 passes the primary payload and the one or
more redundant payloads to the decoder 608.

The decoder 608 decodes the received payloads forwards
the decoded payloads to the adaptive jitter buffer 614. The
adaptive jitter buffer 614 re-arranges the payloads in
sequence and plays out the decoded payloads as and when
needed.

The adaptive jitter buffer 614 is further capable of estimat-
ing a network jitter using the duplicate payload buffer 612.
The adaptive jitter buffer 614 estimates the network jitter
from only those payloads shown in the duplicate payload
buffer 612 as being received as primary payloads (e.g. having
a value of 1 at their location).

The decoded payloads are played out by the adaptive jitter
buffer 614 in a proper sequence to the second user 1084.

Generally, any of the functions, methods, techniques or
components described above can be implemented in modules
using software, firmware, hardware (e.g., fixed logic cir-
cuitry), or any combination of these implementations. The
terms “module” and “block™ are used herein to generally
represent software, firmware, hardware, or any combination
thereof.

In the case of a software implementation, the module rep-
resents program code that performs specified tasks when
executed on a processor (e.g. one or more CPUs). In one
example, the methods described may be performed by a com-
puter configured with software in machine readable form
stored on a computer-readable medium. One such configura-
tion of a computer-readable medium is signal bearing
medium and thus is configured to transmit the instructions
(e.g. as a carrier wave) to the computing device, such as via a
network. The computer-readable medium may also be con-
figured as a non-transitory computer-readable storage
medium and thus is not a signal bearing medium. Examples of
a computer-readable storage medium include a random-ac-
cess memory (RAM), read-only memory (ROM), an optical
disc, flash memory, hard disk memory, and other memory
devices that may use magnetic, optical, and other techniques
to store instructions or other data and that can be accessed by
a machine.

The software may be in the form of a computer program
comprising computer program code for configuring a com-
puter to perform the constituent portions of described meth-
ods or in the form of a computer program comprising com-
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puter program code means adapted to perform all the steps of
any of the methods described herein when the program is run
on a computer and where the computer program may be
embodied on a computer readable medium. The program
code can be stored in one or more computer readable media.
The features of the techniques described herein are platform-
independent, meaning that the techniques may be imple-
mented on a variety of computing platforms having a variety
of processors.

Those skilled in the art will also realize that all, or a portion
of'the functionality, techniques or methods may be carried out
by a dedicated circuit, an application-specific integrated cir-
cuit, a programmable logic array, a field-programmable gate
array, or the like. For example, the module may comprise
hardware in the form of circuitry. Such circuitry may include
transistors and/or other hardware elements available in a
manufacturing process. Such transistors and/or other ele-
ments may be used to form circuitry or structures that imple-
ment and/or contain memory, such as registers, flip flops, or
latches, logical operators, such as Boolean operations, math-
ematical operators, such as adders, multipliers, or shifters,
and interconnects, by way of example. Such elements may be
provided as custom circuits or standard cell libraries, macros,
or at other levels of abstraction. Such elements may be inter-
connected in a specific arrangement. The module may include
circuitry that is fixed function and circuitry that can be pro-
grammed to perform a function or functions; such program-
ming may be provided from a firmware or software update or
control mechanism. In an example, hardware logic has cir-
cuitry that implements a fixed function operation, state
machine or process.

It is also intended to encompass software which
“describes” or defines the configuration of hardware that
implements a module, functionality, component or logic
described above, such as HDL (hardware description lan-
guage) software, as is used for designing integrated circuits,
or for configuring programmable chips, to carry out desired
functions. That is, there may be provided a computer readable
storage medium having encoded thereon computer readable
program code for generating a processing unit configured to
perform any of the methods described herein, or for generat-
ing a processing unit comprising any apparatus described
herein.

The term ‘processor’ and ‘computer’ are used herein to
refer to any device, or portion thereof, with processing capa-
bility such that it can execute instructions, or a dedicated
circuit capable of carrying out all or a portion of the function-
ality or methods, or any combination thereof.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims. It will be understood that the ben-
efits and advantages described above may relate to one
example or may relate to several examples.

Any range or value given herein may be extended or altered
without losing the effect sought, as will be apparent to the
skilled person. The steps of the methods described herein may
be carried out in any suitable order, or simultaneously where
appropriate. Aspects of any of the examples described above
may be combined with aspects of any of the other examples
described to form further examples without losing the effect
sought.
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The invention claimed is:

1. A method for determining a sequence number indicating
aposition of a redundant payload of a voice data packet within
a data stream, the method comprising:

unpacking a primary payload, a sequence number associ-

ated with the primary payload, a timestamp associated
with the primary payload, a redundant payload, and a
timestamp offset associated with the redundant payload
from a voice data packet and storing the sequence num-
ber associated with the primary payload and the times-
tamp associated with the primary payload in a history of
previously received timestamps associated with previ-
ous payloads, and previously received or derived
sequence numbers associated with those previous pay-
loads;

calculating a timestamp parameter for the redundant pay-

load based on the timestamp associated with the primary
payload and the timestamp offset;

calculating a time span of the data stream covered by the

voice data packet using the timestamp offset;

selecting a portion of the history based on the time span;

comparing the timestamp parameter to one or more of the

timestamps in the selected portion of the history to
derive a sequence number for the redundant payload;
and

updating the history to include the timestamp parameter

and derived sequence number of the redundant payload.
2. The method according to claim 1, wherein calculating
the time span of the data stream covered by the voice data
packet using the timestamp offset comprises: calculating the
time span based on the timestamp offset and a sampling rate.
3. The method according to claim 1, wherein selecting the
portion of the history based on the time span comprises:
determining a maximum number of payloads covered by the
time span based on a minimum payload duration.
4. The method according to claim 3, wherein maintaining
the history comprises creating a plurality of entries, with one
entry for each sequence number in the data stream, each entry
arranged to store a timestamp and sequence number value,
and storing the previously received timestamps and previ-
ously received or derived sequence numbers in the corre-
sponding entry.
5. The method according to claim 4, wherein selecting the
portion of the history based on the time span further com-
prises: calculating a location in the history based on the dif-
ference between the primary payload entry in the history and
the maximum number of payloads covered by the time span,
and including all history entries between the location and the
primary payload entry in the selected portion.
6. The method according to claim 5, wherein selecting the
portion of the history based on the time span further com-
prises: further including in the selected portion at least one of:
the primary payload entry; and a prior entry from the history
immediately preceding the location.
7. The method according to claim 1, wherein comparing
the timestamp parameter to one or more of the timestamps in
the selected portion of the history comprises:
using the timestamp parameter to calculate a subsequent
timestamp value applying to a payload immediately sub-
sequent to the redundant payload in the data stream; and

determining whether the subsequent timestamp value is
equal to one of the timestamps in the selected portion,
and, if so, decrementing the sequence number in the
history associated with the subsequent timestamp value
and setting the sequence number for the redundant pay-
load to the decremented sequence number.
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8. The method according to claim 7, wherein using the
timestamp parameter to calculate a subsequent timestamp
value applying to a payload immediately subsequent to the
redundant payload comprises:

determining a measure of size for the redundant payload

based on the amount of data in the redundant payload, a
data type of the redundant payload, and a sampling rate;
and
adding the measure of size to the timestamp parameter.
9. The method according to claim 1, wherein comparing
the timestamp parameter to one or more of the timestamps in
the selected portion of the history comprises: determining
whether the timestamp parameter is equal to one of the times-
tamps in the history, and, if so, setting the sequence number
for the redundant payload to match the sequence number in
the payload history associated with that timestamp.
10. The method according to claim 6, wherein comparing
the timestamp parameter to one or more of the timestamps in
the selected portion of the history comprises:
using the timestamp from the prior entry to calculate a
further timestamp value applying to a payload immedi-
ately subsequent to the prior entry in the data stream; and

determining whether the timestamp parameter is equal to
the further timestamp value, and, if so, incrementing the
sequence number associated with the prior entry and
setting the sequence number for the redundant payload
to the incremented sequence number.
11. The method according to claim 10, wherein using the
timestamp from the prior entry to calculate the further times-
tamp value applying to the payload immediately subsequent
to the prior entry comprises: determining a measure of size for
the payload at the prior entry based on the amount of data in
the prior entry payload, a data type of the prior entry payload
and a sampling rate; and adding the measure of size for the
prior entry payload to the timestamp from the prior entry.
12. The method according to claim 1, wherein comparing
the timestamp parameter to one or more of the timestamps in
the selected portion of the history comprises:
using the timestamp parameter for the redundant payload
to find the closest preceding payload in the history to the
redundant payload and the closest succeeding payload in
the history to the redundant payload having timestamp
and sequence number entries;
calculating a sequence number gap based on the difference
between the sequence numbers for the closest preceding
payload and the closest succeeding payload; and

deriving the sequence number based on the sequence num-
ber gap.

13. The method according to claim 12, wherein deriving
the sequence number based on the sequence number gap
comprises: determining whether the sequence number gap
indicates that three payloads are between the closest preced-
ing payload and closest succeeding payload, and, if so, setting
the sequence number for the redundant payload to a value
midway between the sequence numbers for the closest pre-
ceding payload and the closest succeeding payload.

14. The method according to claim 13, further comprising,
if it is determined that more than three payloads are between
the closest preceding payload and closest succeeding pay-
load:

calculating a timestamp gap based on the difference

between the timestamp of the closest succeeding pay-
load in the history and the timestamp of the closest
preceding payload in the history;

calculating a measure of size for the redundant payload, the

closest succeeding payload, and the closest preceding
payload; and
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determining whether a measure of size for either the closest
succeeding payload or the closest preceding payload is
an integer multiple of the timestamp gap, and, if so,
deriving the sequence number of the redundant payload
by extrapolating the sequence number of the closest
succeeding payload or the closest preceding payload
based on the difference between the timestamp param-
eter of the redundant payload and the timestamp of the
closest succeeding payload or the closest preceding pay-
load.

15. The method according to claim 1, wherein comparing
the timestamp parameter to one or more of the timestamps in
the selected portion of the history comprises:

using the timestamp parameter for the redundant payload

to find the closest succeeding payload in the history to
the redundant payload having a timestamp and sequence
number entry;

calculating a further timestamp gap based on the difference

between the timestamp of the closest succeeding pay-
load in the history and the timestamp parameter for the
redundant payload;

determining a measure of size for the redundant payload

based on the amount of data in the redundant payload, a
data type of the redundant payload, and a sampling rate;
and

determining whether the measure of size is an integer mul-

tiple of the further timestamp gap, and, if so, deriving the
sequence number based on the difference between the
sequence number of the closest succeeding payload and
the integer multiple.

16. The method according to claim 1, wherein the voice
data packet further comprises one or more further redundant
payloads, each having an associated timestamp offset, and the
method further comprises determining from the timestamp
offsets that the redundant payload is the oldest payload, such
that the time span of the data stream is calculated using the
largest timestamp offset.

17. The method according to claim 1, further comprising:

maintaining a buffer having a plurality of locations corre-

sponding to payloads and a previous packet index point-
ing to a location in the buffer corresponding to a previ-
ously received primary payload;

computing a new packet index based on the difference

between the sequence number associated with the pri-
mary payload and a sequence number associated with
the previously received primary payload;

storing a first predefined value at the location in the buffer

corresponding to the new packet index to indicate the
receipt of a primary payload;

calculating a sequence number offset for the redundant

payload based on the derived sequence number and the
sequence number associated with the primary payload;
and

selecting whether to discard the redundant payload based

on the buffer value at a location offset from the new
packet index by the sequence number offset.

18. The method according to claim 17, further comprising,
if the redundant payload is not discarded, storing a second
predefined value at the location offset from the new packet
index by the sequence number offset.
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19. A system for determining a sequence number indicat-
ing a position of a redundant payload of a voice data packet
within a data stream, comprising:

a payload history buffer; and

a processor configured to:

maintain, in the payload history buffer, a history of pre-
viously received timestamps associated with previous
payloads, and previously received or derived
sequence numbers associated with those previous
payloads;

unpack a primary payload, a sequence number associ-
ated with the primary payload, a timestamp associ-
ated with the primary payload, the redundant payload,
and a timestamp offset associated with the redundant
payload from the voice data packet and storing the
sequence number associated with the primary pay-
load and the timestamp associated with the primary
payload in the history;

calculate a timestamp parameter for the redundant pay-
load based on the timestamp associated with the pri-
mary payload and the timestamp offset;

calculate a time span of the data stream covered by the
voice data packet using the timestamp offset;

select a portion of the history based on the time span;

compare the timestamp parameter to one or more of the
timestamps in the selected portion of the history to
derive a sequence number for the redundant payload;
and

update the history to include the timestamp parameter
and derived sequence number of the redundant pay-
load.

20. A non-transitory computer readable medium having
stored therein processor-executable instructions that cause a
processor to:

maintain a history of previously received timestamps asso-

ciated with previous payloads, and previously received
or derived sequence numbers associated with those pre-
vious payloads;
unpack a primary payload, a sequence number associated
with the primary payload, a timestamp associated with
the primary payload, a redundant payload, and a times-
tamp offset associated with the redundant payload from
a voice data packet and storing the sequence number
associated with the primary payload and the timestamp
associated with the primary payload in the history;

calculate a timestamp parameter for the redundant payload
based on the timestamp associated with the primary
payload and the timestamp offset;

calculate a time span of a data stream covered by the voice

data packet using the timestamp offset;

select a portion of the history based on the time span;

compare the timestamp parameter to one or more of the

timestamps in the selected portion of the history to
derive a sequence number for the redundant payload;
and

update the history to include the timestamp parameter and

derived sequence number of the redundant payload.
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